Hermite pseudospectral approximations. An error estimate
نویسندگان
چکیده
منابع مشابه
Adaptive Smolyak Pseudospectral Approximations
Polynomial approximations of computationally intensive models are central to uncertainty quantification. This paper describes an adaptive method for nonintrusive pseudospectral approximation, based on Smolyak’s algorithm with generalized sparse grids. We rigorously analyze and extend the nonadaptive method proposed in [P. G. Constantine, M. S. Eldred, and E. T. Phipps, Comput. Methods Appl. Mec...
متن کاملSpectral and Pseudospectral Approximations Using Hermite Functions: Application to the Dirac Equation
Ben-yu Guo a,∗, Jie Shen b,c,∗∗ and Cheng-long Xu d a School of Mathematical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China E-mail: [email protected] b Department of Mathematics, Xiamen University, Xiamen, 361005, P.R. China c Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA E-mail: [email protected] d Department of Applied Mathematics, Tongji ...
متن کاملEdge Detection Free Postprocessing for Pseudospectral Approximations
Pseudospectral Methods based on global polynomial approximation yield exponential accuracy when the underlying function is analytic. The presence of discontinuities destroys the extreme accuracy of the methods and the well-known Gibbs phenomenon appears. Several types of postprocessing methods have been developed to lessen the effects of the Gibbs phenomenon or even to restore spectral accuracy...
متن کاملLegendre Pseudospectral Approximations of Optimal Control Problems
We consider nonlinear optimal control problems with mixed statecontrol constraints. A discretization of the Bolza problem by a Legendre pseudospectral method is considered. It is shown that the operations of discretization and dualization are not commutative. A set of Closure Conditions are introduced to commute these operations. An immediate consequence of this is a Covector Mapping Theorem (C...
متن کاملAn a posteriori error estimate for finite element approximations of a singularly perturbed advection-diffusion problem
In this paper the author presents an a posteriori error estimator for approximations of the solution to an advectiondiffusion equation with a non-constant, vector-valued diffusion coefficient e in a conforming finite element space. Based on the complementary variational principle, we show that the error of an approximate solution in an associated energy norm is bounded by the sum of the weighte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2005
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2004.09.013